Big Data Fundamentals and Applications

Data Preprocessing -Diale Data Preprocessing -Diale Numerical Analysis II

101010 Asst. Prof. Chan, Chun-Hsiang

110

Master program in Intelligent Computing and Big Data, Chung Yuan Christian University, Taoyuan, Taiwan Undergraduate program in Intelligent Computing and Big Data, Chung Yuan Christian University, Taoyuan, Taiwan Undergraduate program in Applied Artificial Intelligence, , Chung Yuan Christian University, Taoyuan, Taiwan

Outlines

- 1. Data Science Mindset
- 2. Visualization
- 3. Part IV Matrix computation (Numpy)
 Part V Table computation (Pandas)
 Part VI Visualization (Matplotlib & Seaborn & Bokeh)
 Part VII Statistics (Scipy)
- 4. Part X Seismic Risk Map

Data Science Mindset

- When we obtain a data science project, what will you do?
- Here is a simple situation, given a large numerical dataset... If you can ask all questions about the dataset, and then what kinds of questions you want to ask?

Data Science Mindset

- Basically, we need to overview and pre-check the dataset.
 - How many features?
 - Null values?
 - Data type of each column
 - Resolution?

. . .

. . .

• Sampling rate?

3

Data Science Mindset

Visualization – Methods

 Several visualization functions were developed in built-in package, such as line, scatter, boxplot, and histogram.

Distribution					
Continuous Data	Discrete Data	Ordered/ Categorical Data	Proportional Data		
Scatter Bubble Histogram Violin Plot Box Plot Heatmap Density Map	Scatter Bubble Histogram Violin Plot Box Plot Heatmap Density Map	Group/ Stacked Bar Pie	Group/ Stacked Bar Pie		

Visualization – Methods

90°

Visualization – Element

- Important elements in the figure.
 - 1. Title
 - 2. X/Y tick label
 - 3. X/Y label
 - 4. Legend (size, color, symbol)
 - 5. Grid (optional)
 - 6. Error bar (optional)
 - 7. Confidence interval (optional)
 - 8. Colormap (optional)
 - 9. Compass icon(optional)
 - 10. Scale bar(optional)

Figures are from Chan et al. (2022). A novel evaluation of air pollution impact from stationary emission sources to ambient air quality via time-series Granger causality. Earth Data Analytics for Planetary Health. Springer.

Figures are from Chan et al. (2022). A novel evaluation of air pollution impact from stationary emission sources to ambient air quality via time-series Granger causality. Earth Data Analytics for Planetary Health. Springer.

Figure source: https://matplotlib.org/stable/gallery/color/colormap_refere nce.html#sphx-glr-gallery-color-colormap-reference-py

Visualization – Color

Colormap selection

Perceptually Uniform Sequential colormaps

viridis	
plasma	
inferno	
magma	
cividis	

Sequential colormaps

Greys	
Purples	
Blues	
Greens	
Dranges	
Reds	
YlOrBr	
YlOrRd	
OrRd	
PuRd	
RdPu	
BuPu	
GnBu	
PuBu	
YlGnBu	
PuBuGn	
BuGn	
YlGn	

	Sequential (2) colormaps
binary	
gist_yarg	
gist_gray	
gray	
bone	
pink	
spring	
summer	
autumn	
winter	
cool	
Wistia	
hot	
afmhot	
gist_heat	
copper	

Diverging colormaps

Cyclic colormaps twilight twilight_shifted hsv

Visualization – Color

Colormap selection

- Do not pick more than 8 colors from graduated colormap
- Graduated colormaps are for continuous values
- Discrete colormaps are for categorical values
- ... (think about it!)
- To better the understanding of figures...
 - Use different size or symbol to represent different data
 - Plot different data into the same subplot/ figure
 - Use subplot with fixed x and y ranges

Question 2 Visualization

 We can visualize our dataset in different ways, such as 2D, 3D or animation. As a reader, please tell us your thoughts on 2D, 3D and animation in terms of practicality and applicability respectively.

Question Time

If you have any questions, please do not hesitate to ask me.

Big Data Fundamentals and Applications Data Preprocessing – Numerical Analysis II

The End Thank you for your attention))

